8297至尊品牌游戏官方网站

学术通知
关于举办华南理工大学“海内外优秀青年学者论坛”华南软物质科学与技术高等研究院分论坛(第三。┑耐ㄖ
发布时间:2017-06-30        浏览次数:647

广大师生:
       华南理工大学“海内外优秀青年学者论坛”于2015年11月首次启动,旨在面向全球邀请拥有不同学术背景的青年才。乒士蒲把、热点研究领域以及行业产业的技术问题等展开探讨和交流。通过这个平台,互相启迪、开拓视野,增强国际交流与合作,促进双方共同发展。
一、论坛时间
2017年6月30日(星期五)上午8:30开始
二、论坛地点
华南理工大学五山校区25号楼346会议室
三、论坛内容

报告题目一:Microscopic Theories of Cooperative Activated Dynamics in Complex Glass-Forming Soft Materials
报告人:张睿博士,美国伊利诺伊大学香槟分校

       内容摘要:Glass-forming soft materials (e.g., supercooled liquids, polymer plastics, dense colloidal suspensions) are of diverse scientific interest and technological relevance. At the heart of predicting their unique relaxation, diffusion, viscoelastic and rheological properties is a microscopic-level elucidation of the elementary activated hopping process. In this talk I will present my theoretical progress in understanding two general types of cooperative activated motion emerged in complex glassy soft materials. First, I will address how coupled translation-rotation dynamics in concentrated nonspherical colloids leads to new types of nonequilibrium kinetic arrest phases. Unusual glass-fluid-gel re-entrancy and multi-step relaxation behaviors will be described, and quantitative comparisons to experiments presented. Second, I will discuss the dynamical cooperation between different components in glass-forming mixtures. I will take penetrant hopping transport as a focused topic to demonstrate the basic theoretical ideas and rich dynamical properties as a consequence of the inter-component cooperation. Implications of my studies to colloidal self-assembly, membrane-based gas separation and self-healing polymer composites will also be briefly discussed.

报告题目二:The Art of Fabricating giant unimolecules based on simple building blocks
报告人:谢廷正博士,美国阿克伦大学

       内容摘要:One of the biggest challenges in supramolecular chemistry field is how complicated abiomolecule we could construct by self-assembly method. In fact, there are a few of limitations during the synthesis of bigger supramolecules such as structure collapse,structure interspersion,and the increasing difficulty and ultimately impossibility as the number of components involved increases. Over the past five years, inspired by nature mother and geometry mathematics, and after time-consuming attempts, we have developed an avenue of precise design and construction of unimolecular architectures. The biggest abio supramolecule has been synthesized in quantitative yield. It opens the door which leads to a novo method to build up nano-sized unimolecule which could match with complicated biomolecules in nature.

报告题目三:Bulk Energy Dissipation Mechanism for the Fracture of Tough and Self-Healing Polyampholyte Hydrogels
报告人:孙桃林博士,日本北海道大学

       内容摘要:Recently, many tough and self-healing hydrogels have been developed based on physical bonds as reversible sacrificial bonds. As breaking and reforming of physical bonds are time-dependent, these hydrogels are viscoelastic and the deformation rate and temperature pronouncedly influence their fracture behavior. Using a polyampholyte hydrogel as a model system, we observed that the time-temperature superposition principle is obeyed not only for the small strain rheology, but also for the large strain hysteresis energy dissipation and the fracture energy below a certain temperature. The three processes possess the same shift factors that obey the equation of Williams, Landel, and Ferry (WLF) time-temperature equivalence. The fracture energy Γ scales with the crack velocity V_c over a wide velocity range as, 〖Γ ~ V〗_c^α  (α = 0.21). The exponent α of the power law is well-related to the exponent κ of the relaxation modulus G(t)〖 ~ t〗^(-κ) (κ = 0.26), obeying the prediction α=κ/(1+κ) from classic viscoelasticity theory. These results show that the fracture energy of the polyampholyte gel is dominated by the bulk viscoelastic energy dissipated around the crack tip. This investigation gives an insight into designing tough and self-healing hydrogels and predicting their fracture behaviors from their dynamic mechanical spectrum.

告题目四: pH-Responsive Polymeric Microspheres for Micronutrients Fortification
报告人:唐雯博士,美国麻省理工8297至尊品牌游戏官方网站

       内容摘要:Malnutrition is a severe problem in the developing world, impacting 870 million people and causing 5 million child deaths each year. Implementing effective food fortification strategies has the potential to significantly reduce these cases. Table salt (i.e. granular sodium chloride) appears to be an attractive candidate for micronutrients (MNs) fortification. It is essential for human survival and thus is regularly ingested in reasonably known and controlled amounts. A polymeric vehicle that can encapsulate and protect all the essential MNs under various environmental conditions was developed. After ingestion, the polymeric vehicle can become soluble in response to the low pH environment in the upper gut and release the payload accordingly. Specifically, the delivery platform consists of a hyaluronic acid (HA) hydrogel particle (HGP)-based core for MNs encapsulation, and a low-pH-soluble and thermostable microsphere (MS) jacket surrounding the HGPs for protection purposes. The developed system was shown to efficiently encapsulate MNs, maintain their stability under boiling and baking conditions, and release the payload in simulated gastric fluid (SGF) with desired release profiles. This polymeric particle platform has great potential for MNs fortification of food.

报告人简介:

       张睿博士,2003年于清华大学数理基础科学班获得学士学位;2006年于加拿大麦克马斯特大学物理系获得硕士学位;2011年于美国伊利诺伊大学厄巴纳-香槟分校(UIUC)材料科学与工程系获得博士学位并荣获Racheff-Intel杰出研究奖;2011-2013年和2013年至今先后在美国西北大学和UIUC从事博士后研究工作。长期从事于发展和应用统计力学理论和计算机模拟技术来研究高分子和胶体材料中的玻璃化动力学、自组装现象以及仿生行为。在Phys. Rev. Lett., Angew. Chem. Int. Ed., Macromolecules, Soft Matter等软物质主流期刊上发表学术论文13篇,包括第一/通讯作者论文共10篇。

       谢廷正博士于2006年在河北大学获得学士学位,2008年在华中科技大学获得硕士学位,2012年于中国人民大学大学获得博士学位。2012年-至今在美国阿克伦大学从事博士后研究。长期从事超分子自组装化学的研究。在三维超分子多面体的组装,人工分子机器的设计合成等领域取得突出成果,曾设计组装出世界上最大的三维人工超分子。是在J. Am. Chem. Soc., Angew. Chem. Int. Ed. 等化学主流期刊上发表学术论文17篇。

       孙桃林博士于2006年7月在江南大学高分子材料与工程系获得学士学位,2009年7月在中国科学技术大学近代力学系获得硕士学位,2013年9月在日本北海道大学高分子材料系获得博士学位。2013年9月至2015年10月在北海道大学先端生命科学研究院从事博士后研究工作。2015年10月-至今在北海道大学先端生命科学研究院担任特聘助理教授一职。孙桃林博士长期从事于仿生生物体材料的结构设计与特性研究。在高分子软物质水凝胶的结构设计、强度分析、自修复和破坏机理方面取得了创新性研究成果。近几年来共发表论文23篇和专利两项。其中以第一作者或共同作者身份在Nature Materials,Macromolecules, Soft Matter 等国际著名杂志上共发表文章9篇,并在重要国际会议做邀请报告。

       唐雯博士,麻省理工8297至尊品牌游戏官方网站Robert S. Langer教授组博士后研究员。2008年获北京大学化学与分子工程学士学位。2014年获美国Akron大学高分子科学博士学位。主要研究领域包括:具有生物活性的高分子材料的合成表征以及在组织工程中的应用、环境响应的高分子材料的合成表征、以及其所形成的微米或纳米颗粒在药物缓释或者定点释放中的应用。至今在J. Am. Chem. Soc., Biomacromolecules, Chem. Soc. Rev. 等国际著名期刊上发表多篇论文。


地址:中国广东省广州市天河区华南理工大学北区科技园2号楼 邮编:510640

2019?华南理工大学华南软物质科学与技术高等研究院 版权所有

粤ICP备05084312号

技术支持 维程互联

微信公众号

8297至尊品牌游戏官方网站最新网页版在线平台(2025已更新)