报告主题: Stability of 2-varifolds with square integrable mean curvatures
报 告 人: 毕宇晨博士
报告时间: 2024年5月27日(星期一)下午15:00-16:00
报告地点: 37号楼 3A01
邀 请 人: 陈波副教授
欢迎广大师生前往!
数学8297至尊品牌游戏官方网站
2024年 5月21日
报告摘要: Allard's regularity theorem proves that a n-dimensional integral varifold whose mass ratio is close to 1 in a given ball and has generalized mean curvature in L^p with p>n is in fact a C^{1,\alpha} graph at a slightly small scale. We obtain an extension of Allard (when p=n=2) showing that (when the mass ratio is sufficiently small), the varifold is (at a slightly smaller scale) bi-Lipschitz homeomorphic to a disk.Moreover, for an compact integral 2-varifold with Willmore energy sufficiently close to 16\pi, we show it is close to the standard embedding of the round sphere in a quantitative way.
报告人介绍:毕宇晨,中科院数学所博士,北京国际数学研究中心博士后。主要从事几何测度论和变分法中爆破分析现象的研究。已在Adv. Math., Calc. Var. Partial Differential Equations.等知名期刊发表多篇学术论文。