8297至尊品牌游戏官方网站:朱旭辉
▎基本信息
| |
▎研究方向
有机功能材料合成及其光电特性
|
▎招生专业
硕士生 | 博士生 | 工程博士 |
|
|
|
▎教育与工作经历
1990/09-1994/06,安徽大学,化学系,本科生 1994/09-1997/06,安徽大学,化学系,硕士生 1997/09-2000/06,南京大学,配位化学国家重点实验室,博士生 2000/10-2001/09,德国Martin-Luther University of Halle-Wittenberg,博士后 2001/11-2002/10,法国University of Angers, 博士后 2002/12-2004/12, 复旦大学, 博士后 2005/01-2008/11,华南理工大学,材料8297至尊品牌游戏官方网站高分子光电材料与器件研究所,副教授 2008/12-今,华南理工大学,材料8297至尊品牌游戏官方网站 高分子光电材料与器件研究所/发光材料与器件国家重点实验室,教授、博士生导师(2010.6) 2017, 广东省珠江学者特聘教授 |
▎科研与教学情况
From design to applications
Electron Transport (Optoelectronics)
News & Views
Phosphine oxide derivatives as a robust component for optoelectronics. Ling-Ling Chen, Wan-Yi Tan, Xu-Hui Zhu,* Science Bulletin 2020, 65, 2033–2035. https://www.sciencedirect.com/science/article/pii/S2095927320305703
Key words: Phenanthrolines; 1,3,5-Triazines; Pyridines; Phosphine Oxides; Naphthylenes & Anthracenes
Triazine-based electron-transport material for stable phosphorescent organic light-emitting diodes. 液晶与显示 (Chinese Journal of Liquid Crystals and displays), 2021,36(1),53-61 (NaAN-m-TRZ, Invited paper). http://cjlcd.lightpublishing.cn/thesisDetails#10.37188/CJLCD.2020-0237
Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability. Sci. China Chem. 2020, 63, 904 (TPO-Py-BPTRZ). http://engine.scichina.com/publisher/scp/journal/SCC/doi/10.1007/s11426-020-9714-0?slug=abstract
Suppressing defects-induced non-radiative recombination for efficient perovskite solar cells through green anti-solvent engineering. Adv. Mater. 2020, adma202003965. https://doi.org/10.1002/adma.202003965
Appending triphenyltriazine to 1,10-phenanthroline: a robust electron-transport material for stable organic light-emitting diodes, Sci. Bull. 2018, 63,446 (TRZ-m-Phen). https://doi.org/10.1016/j.scib.2018.03.003
Triarylphosphine oxide-phenanthroline molecular conjugate as a promising doped electron-transport layer for organic light-emitting diodes. Organic Electronics 2017, 48, 271-275 (Phen-NaDPO). http://dx.doi.org/10.1016/j.orgel.2017.06.021
High Tg small-molecule phenanthroline derivatives as a potential universal hole-blocking layer for high power-efficiency and stable organic light-emitting diodes. J. Mater. Chem. C, 2017,5, 2329-2336. https://doi.org/10.1039/C6TC05436F
BiPh-m-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship. CHIN. PHYS. LETT. Vol. 34, No. 7 (2017) 077203. http://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/077203
Promising Operational Stability of Potentially High Power Efficiency Organic Light-Emitting Diodes Utilizing a Simple and Versatile Electron-Transport/Hole-Blocking Layer. Adv. Electron. Mater. 2016, 2, 1600101. https://www.onlinelibrary.wiley.com/doi/full/10.1002/aelm.201600101
(2,2′-Binaphthyl-6,6’-diyl)bis(diphenylphosphine oxide) as a potentially simple and efficient electron-transport layer for stable organic light-emitting diodes. Organic Electronics 28 (2016) 269–274. http://dx.doi.org/10.1016/j.orgel.2015.11.002
Lending triarylphosphine oxide to phenanthroline: a facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes, Adv. Funct. Mater. 2014, 24, 6540 (Phen-NaDPO). https://doi.org/10.1002/adfm.201401685; http://www.skllmd.com/zhuxuhui/130
Ammonium Glasses
Alcohol-Processable Organic Amorphous Electrolytes as an Effective Electron-Injection Layer for Organic Light-Emitting Diodes. Chem. Asian J. 2012, 7, 2126 – 2132. http://onlinelibrary.wiley.com/doi/10.1002/asia.201200299/abstract
An Ionic Molecular Glass as Electron Injection Layer for Efficient Polymer Light-Emitting Diode. Macromol. Rapid Commun. 2009, 30, 1484–1491. https://www.ncbi.nlm.nih.gov/pubmed/21638409
Amino glasses
Small-Molecule Amine Compound as Electron-Injection Layer for Organic Light-Emitting Diodes. Proc. of SPIE 2012, Vol. 8474, 84740V-1. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8474/1/Small-molecule-amine-compound-as-electron-injection-layer-for-organic/10.1117/12.929669.short?SSO=1
Hole Transport
A high Tg small-molecule arylamine derivative as a doped hole-injection/transport material for stable organic light-emitting diodes, Org. Electron. 2018, 58, 139. https://www.sciencedirect.com/science/article/pii/S156611991830168X
Soluble acetylenic molecular glasses based on dithienyldiketopyrrolopyrrole for organic solar cells. Dyes and Pigments 126 (2016) 96-103. http://dx.doi.org/10.1016/j.dyepig.2015.11.018
Multihydroxylated aryl amine as a novel alcohol-processable hole-transport molecular glass exhibiting remarkable resistance to weakly polar solvents. Organic Electronics 14 (2013) 2051–2057. http://dx.doi.org/10.1016/j.orgel.2013.04.041
Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole transporting material using a fluorine-containing hydrophobic Lewis acid. Energy Environ. Sci. 2018,11, 2035-2045. https://pubs.rsc.org/en/content/articlelanding/2018/ee/c8ee00036k/unauth#!divAbstract
Printable Optoelectronics
Roll to roll compatible fabrication of inverted organic solar cells with a self-organized charge selective cathode interfacial layer, J. Mater. Chem. A 2016, 4, 5032 (Phen-NaDPO, Communication). https://pubs.rsc.org/en/content/articlehtml/2016/ta/c6ta00391e
Inkjet printing a small-molecule binary emitting layer for organic light-emitting diodes. J. Mater. Chem. C 2020, 8, 6906-6913. https://doi.org/10.1039/D0TC00628A
Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. Journal of Colloid and Interface Science 465 (2016) 106–111. http://dx.doi.org/10.1016/j.jcis.2015.11.067
Review
Solution-processable single-material molecular emitters for organic light-emitting devices, Xu-Hui Zhu*, Junbiao Peng, Yong Cao, Jean Roncali*, Chem. Soc. Rev. 2011, 40, 3509. https://pubs.rsc.org/en/content/articlehtml/2011/cs/c1cs15016b
Blue Emitters
Efficient soluble deep blue electroluminescent dianthracenylphenylene emitters with CIE y (y < = 0.08) based on triplet-triplet annihilation, Sci. Bull. 2019, 64, 774. https://doi.org/10.1016/j.scib.2019.04.029
Asymmetrically 9,10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses. Organic Electronics 9 (2008) 649–655. https://www.sciencedirect.com/science/article/pii/S1566119908000694
Anthracene-Cored Dendrimer for Solution-Processible Blue Emitter: Syntheses, Characterizations, Photoluminescence, and Electroluminescence. Macromol. Rapid Commun. 2006, 27, 914–920. https://onlinelibrary.wiley.com/doi/abs/10.1002/marc.200600137
Red Emitters
Amorphous fluorescent organic emitters for efficient solution-processed pure red electroluminescence: synthesis, purification, morphology and solid state photoluminescence and device characterizations. J. Org. Chem. 2007, 72, 8580. https://pubs.acs.org/doi/abs/10.1021/jo7014517
A dithienylbenzothiadiazole pure red molecular emitter with electron transport and exciton self-confinement for non-doped organic red light-emitting diodes. Adv. Mater. 2008, 20, 4172. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200800730
Electroluminescence and laser emission of soluble pure red fluorescent molecular glasses based on dithienylbenzothiadiazole. Adv. Funct. Mater. 2009, 19, 2978. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.200900365
Electrochemistry and electrogenerated chemiluminescence of dithienylbenzothiadiazole-differential reactivity of donor and acceptor groups and simulations of radical cation-anion and dication-radical anion annihilations, JACS 2010, 132, 13453. https://pubs.acs.org/doi/abs/10.1021/ja105282u
Electrogenerated chemiluminescence of solutions, films, and nanoparticles of dithienylbenzothiadiazole-based donor-acceptor-donor red fluorophore. Fluorescence quenching study of organic nanoparticles. JACS 2013, 135, 8868. https://pubs.acs.org/doi/abs/10.1021/ja312189k
Delayed fluorescence in a solution-processable pure red molecular organic emitter based on dithienylbenzothiadiazole: A joint optical, electroluminescence and magnetoelectroluminesence study. ACS Appl. Mater. Interfaces 2015, 7, 2972. https://pubs.acs.org/doi/abs/10.1021/am508574m
Small-molecule light-emitting electrochemical cells: evidence for in situ electrochemical doping and functional operation, Chem. Commun. 2013, 49, 4926. https://doi.org/10.1039/C3CC40942B
Synthesis, optical properties and ultrafast dynamics of a 2,1,3-benzothiadiazole-based red emitter with intense fluorescence and large two-photon absorption cross-section. Dyes and Pigments, 2012, 92, 573-579. https://www.sciencedirect.com/science/article/pii/S0143720811001896?via%3Dihub
Green Emitters
Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes. Organic Electronics 13 (2012) 1092–1099. http://dx.doi.org/10.1016/j.orgel.2012.03.001
Asymmetrically 4,7-Disubstituted Benzothiadiazoles as Efficient Non-doped Solution-Processable Green Fluorescent Emitter. Organic Letters 2009, 11, 5318–5321. https://pubs.acs.org/doi/10.1021/ol9022563
Luminescent Metal Complexes
Potential solution processible phosphorescent iridium complexes toward applications in doped light-emitting diodes: Rapid syntheses and optical and morphological characterizations. J. Org. Chem. 2006, 71, 6281. https://pubs.acs.org/doi/abs/10.1021/jo060840h
Organic Photovoltaics (Acceptors & Donors)
Small molecular electron acceptor: Enhanced Efficiency and Stability of Nonfullerene Ternary Polymer Solar Cells Based on Spontaneously Assembled Active Layer: The Role of a High Mobility Small Molecular Electron Acceptor. J. Mater. Chem. C, 2020, 8, 6196-6202. https://pubs.rsc.org/en/Content/ArticleLanding/2020/TC/D0TC00225A#!divRelatedContent&articles
Self-organization: Unravelling the self-assembly of diketopyrrolopyrrole (DPP)-based photovoltaic molecules. Langmuir 2018, 34, 11952. https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.8b01798
Ternary solar cells: Enhancing performances of solution-processed inverted ternary small-molecule organic solar cells: manipulating the host-guest donors and acceptor interaction, Solar RRL 2017, 1, 1600003. https://onlinelibrary.wiley.com/doi/pdf/10.1002/solr.201600003
Bis(dithienyldiketopyrrolopyrrole) compounds with a diethynylbithienyl linkage for organic solar cells. Dyes and Pigments 154 (2018) 100–106. https://doi.org/10.1016/j.dyepig.2018.02.046
Effective modulation of an aryl acetylenic molecular system based on dithienyldiketopyrrolopyrrole fororganic solar cells. J. Mater. Chem. C, 2016, 4, 3757. https://pubs.rsc.org/en/content/articlelanding/2016/tc/c5tc03844h
A Solution-Processable Dithienyldiketopyrrolopyrrole Dye Molecule with Acetylene as a p-Linkage for Organic Solar Cells. Asian J. Org. Chem. 2015, 4, 470 – 476. http://dx.doi.org/10.1002/ajoc.201500068.
A solution-processable diketopyrrolopyrrole dye molecule with (fluoronaphthyl)thienyl endgroups for organic solar cells. Dyes and Pigments, 2014, 101, 51-57. https://doi.org/10.1016/j.dyepig.2013.09.022
Before 2004 (Postdoc, Martin-Luther Univ Halle-Wittenberg, Univ Angers & Fudan Univ)
An efficient electroluminescent (2,2’-bipyridine mono N-oxide)Europium(III) b-diketonate complex. J . Mater. Chem., 2004, 14, 2732-2734. https://pubs.rsc.org/en/content/articlelanding/2004/jm/b407184k
Application of Chelate Phosphine Oxide Ligand in EuIII Complex with Mezzo Triplet Energy Level, Highly Efficient Photoluminescent, and Electroluminescent Performances. J. Phys. Chem. B 2006, 110, 3023–3029. https://pubs.acs.org/doi/10.1021/jp055355p
Effect of mono- versus di-ammonium cation of 2,2′-bithiophene derivatives on the structure of organic-inorganic hybrid materials based on iodometallates. Inorg. Chem. 2003, 42, 5330. https://pubs.acs.org/doi/abs/10.1021/ic034235y
Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer. Adv. Mater. 2003, 15, 906. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200304816
Synthesis, characterization, and structure of [{PtMe3(9-MeA)}3] (9-MeAH = 9-methyladenine): A cyclic trimeric platinum(IV) complex with a nucleobase. Inorg. Chem. 2002, 41, 2667. https://pubs.acs.org/doi/abs/10.1021/ic0110530
(C4H3SCH2NH3)(2)(CH3NH3)Pb2I7: non-centrosymmetrical crystal structure of a bilayer hybrid perovskite. Chem. Commun. 2002, 2160-2161. https://pubs.rsc.org/en/content/articlelanding/2002/CC/B205543K#!divAbstract