8297至尊品牌游戏官方网站

8297至尊品牌游戏官方网站

8297至尊品牌游戏官方网站:朱旭辉

2020-02-25 867

基本信息

  • 职称:教授

  • 办公地址:北区科技园1号楼

  • 电子邮箱:xuhuizhu@scut.edu.cn

  • 联系电话:020-87113533

  • 人才称号:广东省高等8297至尊品牌游戏官方网站“珠江学者”特聘教授、教育部跨新世纪优秀人才获得者

  • 所在系所:光电材料与器件系


研究方向

有机功能材料合成及其光电特性

                    

招生专业

硕士生博士生工程博士
  • 080500材料科学与工程(光电材料方向)

  • 080500材料科学与工程(光电材料方向)

  • 085600材料与化工


教育与工作经历 

1990/09-1994/06,安徽大学,化学系,本科生

1994/09-1997/06,安徽大学,化学系,硕士生

1997/09-2000/06,南京大学,配位化学国家重点实验室,博士生

2000/10-2001/09,德国Martin-Luther University of Halle-Wittenberg,博士后

2001/11-2002/10,法国University of Angers, 博士后

2002/12-2004/12, 复旦大学, 博士后

2005/01-2008/11,华南理工大学,材料8297至尊品牌游戏官方网站高分子光电材料与器件研究所,副教授

2008/12-今,华南理工大学,材料8297至尊品牌游戏官方网站 高分子光电材料与器件研究所/发光材料与器件国家重点实验室,教授、博士生导师(2010.6)

2017, 广东省珠江学者特聘教授


科研与教学情况

From design to applications

Electron Transport (Optoelectronics)

News & Views

Phosphine oxide derivatives as a robust component for optoelectronics. Ling-Ling Chen, Wan-Yi Tan, Xu-Hui Zhu,* Science Bulletin 2020, 65, 2033–2035. https://www.sciencedirect.com/science/article/pii/S2095927320305703

 

Key words: Phenanthrolines; 1,3,5-Triazines; Pyridines; Phosphine Oxides; Naphthylenes & Anthracenes

  1. Triazine-based electron-transport material for stable phosphorescent organic light-emitting diodes. 液晶与显示 (Chinese Journal of Liquid Crystals and displays), 2021,36(1),53-61 (NaAN-m-TRZ, Invited paper). http://cjlcd.lightpublishing.cn/thesisDetails#10.37188/CJLCD.2020-0237

  2. Molecular engineering of an electron-transport triarylphosphine  oxide-triazine conjugate toward high-performance phosphorescent  organic light-emitting diodes with remarkable stability. Sci. China Chem. 2020, 63, 904 (TPO-Py-BPTRZ). http://engine.scichina.com/publisher/scp/journal/SCC/doi/10.1007/s11426-020-9714-0?slug=abstract

  3. Suppressing defects-induced non-radiative recombination for  efficient perovskite solar cells through green anti-solvent engineering. Adv. Mater. 2020,  adma202003965. https://doi.org/10.1002/adma.202003965

  4. Appending triphenyltriazine to 1,10-phenanthroline: a robust electron-transport material for stable organic light-emitting diodes, Sci. Bull. 2018, 63,446 (TRZ-m-Phen). https://doi.org/10.1016/j.scib.2018.03.003

  5. Triarylphosphine oxide-phenanthroline molecular conjugate as a promising doped electron-transport layer for organic light-emitting diodes. Organic Electronics 2017, 48, 271-275 (Phen-NaDPO). http://dx.doi.org/10.1016/j.orgel.2017.06.021

  6. High Tg small-molecule phenanthroline derivatives as a potential universal hole-blocking layer for high power-efficiency and stable organic light-emitting diodes. J. Mater. Chem. C, 2017,5, 2329-2336. https://doi.org/10.1039/C6TC05436F

  7. BiPh-m-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship. CHIN. PHYS. LETT. Vol. 34, No. 7 (2017) 077203. http://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/077203

  8. Promising Operational Stability of Potentially High Power Efficiency Organic Light-Emitting Diodes Utilizing a Simple and Versatile Electron-Transport/Hole-Blocking Layer. Adv. Electron. Mater. 2016, 2, 1600101. https://www.onlinelibrary.wiley.com/doi/full/10.1002/aelm.201600101

  9. (2,2′-Binaphthyl-6,6’-diyl)bis(diphenylphosphine oxide) as a potentially simple and efficient electron-transport layer for stable organic light-emitting diodes. Organic Electronics 28 (2016) 269–274.      http://dx.doi.org/10.1016/j.orgel.2015.11.002      

  10. Lending triarylphosphine oxide to phenanthroline: a facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes, Adv. Funct. Mater. 2014, 24, 6540 (Phen-NaDPO). https://doi.org/10.1002/adfm.201401685;     http://www.skllmd.com/zhuxuhui/130

 

Ammonium Glasses

  1. Alcohol-Processable Organic Amorphous Electrolytes as an Effective Electron-Injection Layer for Organic Light-Emitting Diodes. Chem. Asian J. 2012, 7, 2126 – 2132. http://onlinelibrary.wiley.com/doi/10.1002/asia.201200299/abstract      

  2. An Ionic Molecular Glass as Electron Injection Layer for Efficient Polymer Light-Emitting Diode. Macromol. Rapid Commun. 2009, 30, 1484–1491. https://www.ncbi.nlm.nih.gov/pubmed/21638409

 

Amino glasses

Small-Molecule Amine Compound as Electron-Injection Layer for Organic Light-Emitting Diodes.  Proc. of SPIE 2012, Vol. 8474, 84740V-1. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8474/1/Small-molecule-amine-compound-as-electron-injection-layer-for-organic/10.1117/12.929669.short?SSO=1

 

Hole Transport

  1. A high Tg small-molecule arylamine derivative as a doped hole-injection/transport material for stable organic light-emitting diodes,  Org. Electron. 2018, 58, 139. https://www.sciencedirect.com/science/article/pii/S156611991830168X

  2. Soluble acetylenic molecular glasses based on dithienyldiketopyrrolopyrrole for organic solar cells. Dyes and Pigments 126 (2016) 96-103. http://dx.doi.org/10.1016/j.dyepig.2015.11.018      

  3. Multihydroxylated aryl amine as a novel alcohol-processable hole-transport molecular glass exhibiting remarkable resistance to weakly polar solvents.  Organic Electronics 14 (2013) 2051–2057. http://dx.doi.org/10.1016/j.orgel.2013.04.041

  4. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole transporting material using a fluorine-containing hydrophobic Lewis acid. Energy Environ. Sci. 2018,11, 2035-2045.  https://pubs.rsc.org/en/content/articlelanding/2018/ee/c8ee00036k/unauth#!divAbstract

 

Printable Optoelectronics

  1. Roll to roll compatible fabrication of inverted organic solar cells with a self-organized charge selective cathode interfacial layer, J. Mater. Chem. A  2016, 4, 5032 (Phen-NaDPO, Communication).   https://pubs.rsc.org/en/content/articlehtml/2016/ta/c6ta00391e

  2. Inkjet printing a small-molecule binary emitting layer for organic light-emitting diodes. J. Mater. Chem. C 2020, 8, 6906-6913.  https://doi.org/10.1039/D0TC00628A

  3. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer.  Journal of Colloid and Interface Science 465 (2016) 106–111. http://dx.doi.org/10.1016/j.jcis.2015.11.067

 

Review

Solution-processable single-material molecular emitters for organic light-emitting devices, Xu-Hui Zhu*, Junbiao Peng, Yong Cao, Jean Roncali*, Chem. Soc. Rev. 2011, 40, 3509. https://pubs.rsc.org/en/content/articlehtml/2011/cs/c1cs15016b

 

Blue Emitters

  1. Efficient soluble deep blue electroluminescent dianthracenylphenylene emitters with CIE y (y < = 0.08) based on triplet-triplet annihilation, Sci. Bull. 2019, 64, 774. https://doi.org/10.1016/j.scib.2019.04.029

  2. Asymmetrically 9,10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses.  Organic Electronics 9 (2008) 649–655. https://www.sciencedirect.com/science/article/pii/S1566119908000694

  3. Anthracene-Cored Dendrimer for Solution-Processible Blue Emitter: Syntheses, Characterizations, Photoluminescence, and Electroluminescence. Macromol. Rapid Commun. 2006, 27, 914–920. https://onlinelibrary.wiley.com/doi/abs/10.1002/marc.200600137

 

Red Emitters

  1. Amorphous fluorescent organic emitters for efficient solution-processed pure red electroluminescence: synthesis, purification, morphology and solid state photoluminescence and device characterizations. J.  Org. Chem. 2007, 72, 8580. https://pubs.acs.org/doi/abs/10.1021/jo7014517 

  2. A dithienylbenzothiadiazole pure red molecular emitter with electron transport and exciton self-confinement for non-doped organic red light-emitting diodes. Adv. Mater. 2008, 20, 4172.  https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200800730      

  3. Electroluminescence and laser emission of soluble pure red fluorescent molecular glasses based on dithienylbenzothiadiazole. Adv. Funct. Mater. 2009, 19, 2978. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.200900365       

  4. Electrochemistry and electrogenerated chemiluminescence of dithienylbenzothiadiazole-differential reactivity of donor and acceptor groups and simulations of radical cation-anion and      dication-radical anion annihilations, JACS 2010, 132, 13453. https://pubs.acs.org/doi/abs/10.1021/ja105282u      

  5. Electrogenerated chemiluminescence of solutions, films, and nanoparticles of dithienylbenzothiadiazole-based donor-acceptor-donor red fluorophore. Fluorescence quenching study of organic nanoparticles. JACS 2013, 135, 8868. https://pubs.acs.org/doi/abs/10.1021/ja312189k

  6. Delayed fluorescence in a solution-processable pure red molecular organic emitter based on dithienylbenzothiadiazole: A joint optical, electroluminescence and magnetoelectroluminesence study. ACS Appl. Mater. Interfaces 2015, 7, 2972. https://pubs.acs.org/doi/abs/10.1021/am508574m

  7. Small-molecule light-emitting electrochemical cells: evidence for in situ electrochemical doping and functional operation, Chem. Commun. 2013, 49, 4926. https://doi.org/10.1039/C3CC40942B

  8. Synthesis, optical properties and ultrafast dynamics of a 2,1,3-benzothiadiazole-based red emitter with intense fluorescence and large two-photon absorption cross-section. Dyes and Pigments, 2012,  92, 573-579. https://www.sciencedirect.com/science/article/pii/S0143720811001896?via%3Dihub

 

Green Emitters

  1. Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes.  Organic Electronics 13 (2012) 1092–1099. http://dx.doi.org/10.1016/j.orgel.2012.03.001

  2. Asymmetrically 4,7-Disubstituted Benzothiadiazoles as Efficient Non-doped Solution-Processable Green Fluorescent Emitter. Organic  Letters 2009, 11, 5318–5321. https://pubs.acs.org/doi/10.1021/ol9022563

 

Luminescent Metal Complexes

Potential solution processible phosphorescent iridium complexes toward applications in doped light-emitting diodes: Rapid syntheses and optical and morphological characterizations. J.  Org. Chem. 2006, 71, 6281.  https://pubs.acs.org/doi/abs/10.1021/jo060840h

 

Organic Photovoltaics (Acceptors & Donors)

  1. Small molecular electron acceptor: Enhanced Efficiency and Stability of Nonfullerene  Ternary Polymer Solar Cells Based on Spontaneously Assembled Active Layer: The Role of a High Mobility Small Molecular Electron Acceptor. J. Mater.  Chem. C, 2020, 8, 6196-6202. https://pubs.rsc.org/en/Content/ArticleLanding/2020/TC/D0TC00225A#!divRelatedContent&articles

  2. Self-organization: Unravelling the self-assembly of  diketopyrrolopyrrole (DPP)-based photovoltaic molecules. Langmuir 2018, 34, 11952. https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.8b01798

  3. Ternary solar cells: Enhancing performances of solution-processed inverted ternary small-molecule organic solar cells: manipulating the host-guest donors and acceptor interaction, Solar RRL 2017, 1, 1600003. https://onlinelibrary.wiley.com/doi/pdf/10.1002/solr.201600003

  4. Bis(dithienyldiketopyrrolopyrrole) compounds with a diethynylbithienyl linkage for organic solar cells. Dyes and Pigments 154 (2018) 100–106. https://doi.org/10.1016/j.dyepig.2018.02.046

  5. Effective modulation of an aryl acetylenic molecular system based on dithienyldiketopyrrolopyrrole fororganic solar cells.  J. Mater. Chem. C, 2016, 4, 3757. https://pubs.rsc.org/en/content/articlelanding/2016/tc/c5tc03844h

  6. A Solution-Processable Dithienyldiketopyrrolopyrrole Dye Molecule with Acetylene as a p-Linkage for Organic Solar Cells. Asian J. Org. Chem. 2015, 4, 470 – 476. http://dx.doi.org/10.1002/ajoc.201500068.

  7. A solution-processable diketopyrrolopyrrole dye molecule with  (fluoronaphthyl)thienyl endgroups for organic solar cells. Dyes and Pigments, 2014, 101, 51-57. https://doi.org/10.1016/j.dyepig.2013.09.022

 

Before 2004 (Postdoc, Martin-Luther Univ Halle-Wittenberg, Univ Angers & Fudan Univ)

  1. An efficient electroluminescent (2,2’-bipyridine mono N-oxide)Europium(III) b-diketonate complex. J . Mater. Chem., 2004, 14, 2732-2734. https://pubs.rsc.org/en/content/articlelanding/2004/jm/b407184k

  2. Application of Chelate Phosphine Oxide Ligand in EuIII Complex with Mezzo Triplet Energy Level, Highly Efficient Photoluminescent, and  Electroluminescent Performances.  J. Phys. Chem. B 2006, 110, 3023–3029.  https://pubs.acs.org/doi/10.1021/jp055355p

  3. Effect of mono- versus di-ammonium cation of 2,2′-bithiophene  derivatives on the structure of organic-inorganic hybrid materials based  on iodometallates. Inorg. Chem. 2003, 42, 5330.  https://pubs.acs.org/doi/abs/10.1021/ic034235y

  4. Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer. Adv.  Mater. 2003,  15, 906.  https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200304816

  5. Synthesis, characterization, and structure of [{PtMe3(9-MeA)}3] (9-MeAH = 9-methyladenine): A cyclic trimeric platinum(IV) complex with a  nucleobase. Inorg. Chem. 2002, 41, 2667. https://pubs.acs.org/doi/abs/10.1021/ic0110530

  6. (C4H3SCH2NH3)(2)(CH3NH3)Pb2I7: non-centrosymmetrical crystal  structure of a bilayer hybrid perovskite. Chem. Commun. 2002,  2160-2161. https://pubs.rsc.org/en/content/articlelanding/2002/CC/B205543K#!divAbstract

 


华南理工大学发光材料与器件全国重点实验室版权所有

地址:广东省广州市五山路381号华南理工大学北区科技园1号楼

电话:020-87113184 传真:020-87113184

邮箱:skllmd@scut.edu.cn

欢迎关注发光材料与器件全国重点实验室公众号
8297至尊品牌游戏官方网站最新网页版在线平台(2025已更新)